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Some NMR experiments produce data with several of the initial
points missing. The inverse discrete Fourier transform (IDFT)
assumes these points are present so the data cannot be so trans-
formed without artifact-ridden results. This problem is often par-
ticularly severe when projection imaging with free-induction de-
cays (FIDs). This paper compares recent methods for obtaining a
projection from incomplete data and elaborates on their strengths
and limitations. One method is to write the transform that would
take the desired projection to the truncated data set, and then
solve the matrix equation by singular value decomposition. A
second replaces the missing data with zeros, so that an IDFT
produces a projection with unwanted artifacts. Then one solves the
matrix equation that takes the desired projection to the artifact-
ridden projection. A third uses the same artifact-ridden projection,
but fits the region outside the bandwidth of the sample with as
many sinusoidal functions as there are missing data. The coeffi-
cients of these functions are estimates of the missing data, and the
projection is obtained by transforming the completed FID or
subtracting the extrapolation of the fitted curve from the region
containing the object. We show that when all three methods are
applicable, they theoretically produce the same result. They differ
by ease of implementation and possibly by computational errors.
They give a result similar to that of the previous method that
iteratively corrects the FID and projection after repeated IDFTs
and DFTs. We find that one can obtain a projection despite
missing a substantial number of data. © 1999 Academic Press

Key Words: partial-data transform; compact support; band-
limited; extrapolation; Gerchberg—Papoulis.

INTRODUCTION

spectroscopy, only a few data are missing and the spectrum
corrected by adjusting the baseline and phase. When mc
spectroscopy data are missing, they can be extrapolated af
fitting the FID with a series of damped complex exponential
(), or the artifact produced in the spectrum can be approx
mated and subtracte@)( In solid state NMR with shorf,
samples, the problem is more serious and the solutions &
more specialized3). In our applications of imaging with FIDs
the problem is severe and the corrections used in spectroscc
do not result in a satisfactory projection. The applied magnet
field gradient makes the FID decay fast, and implies man
frequency components, making a curve fit more difficult. It i
helpful to oversample the data, i.e., collect data at a frequen
greater than that of the bandwidth of the object. Then the obje
occupies a limited region of the projection, and one can use tt
knowledge that the projection should be zero outside th
region. Gerchbergd) and Papoulisg) used this fact in their
iterative technique. An inverse discrete Fourier transforr
(IDFT) of the known portion of the signal, along with zeros
substituted for missing data, yields a projection that is then s
to zero outside the bounds of the object. Then a DFT yields
FID, which in turn is modified by replacing the known segmen
with the original data. This procedure is iterated until it con:
verges to yield an estimate for the missing data points and tl
projection.

Jain and Ranganatl)(presented a generalization of trans-
forming partial data from band-limited signals, which Plevritis
and Macovski 7) applied to NMR imaging to construct images
of spatially bounded objects despite the fact that data we

In projection imaging with free-induction decays (FIDs), théyjissing from the ends of echoes. Both references express |

initial part of the signal cannot be sampled during radio tra”ﬁfoblem as an ill-conditioned matrix equation, which is im-

mission, or during recovery of the receiver and aSSOCiatB?oved using known constraints of the object, and sugge
ﬁlters. On.e is faced' with the prpplem of constructing a projeg—oMng it by singular value decomposition (SVD). An exten-
tion (1D image) without the initial data. Usually, in NMRjve review of transforming partial data sets for NMR imaging
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Gerchberg—Papoulis algorithm remained the method of choit
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for this problem. We recently proposed two more non-iterative Ty

methods 10, 17 to address these early missing data. Plevritis 9=t (4]
and Macovski’s 7) method can also be applied to early miss-
ing data, so three non-iterative methods are available to solve
the same problem. In this paper, we demonstrate that Whennaah-integer, but for the purposes of comparing methods w

three methods are applicable, they will theoretically yield t nsiderq to be integer. Our task is to find, even when
same result because they imply that the same matrix equatiol antss. s s én ds. s s ' are miss-
0y ©O1y =+ =y 91 Ny ©ON—-1y = =+ 3y ON—-q+1

is satisfied. In addition, when the Gerchberg—Papoulis algiﬂ-g The total number of points missing frosis 2q — 1

rithm converges, it should also yield the same result. T?)eecause the first poirs, = sy is common to each FID
calculations are different, however, so the methods may differ " '

by errors in computation. One method is easy to program to
include non-integral numbers of missing data and situations
when the data are not oversampled. We discuss it in deta”l\%?ethod 1
show the limitations of these methods.

does not have to be an integer multipleXif so g can be

COMMON NOTATION FOR THREE METHODS

To develop a matrix formulation common to the three meth
DEFINITION OF THE PROBLEM ods, we represent the completeness of the data By anN
diagonal matrixC, whereC,, = 1, if the nth data point is

We seek a one-dimensional (1D) discrete image, or projgd€sent, anc,, = 0, if the nth data point is missing. Then

tion, x = col(Xe, X4, ..., Xn_1). The digitized signal with no

missing points will be represented = col(s,, s, ..., d=Cs (5]
Sn-1), Wheres,, s, ..., Swnz-1 IS one FID with a positive

magnetic field gradient ansl, sy 1, . .., Sy IS another FID defines the data set with zeros substituted for the missir
with a negative one. Becausg = s,, it may be excluded from points.

s. The relationship betweemandx is given by the DFT, Similarly, the knowledge that some of the elemextare

zero is represented by

N—-1
L2
S,= > Xpe W™ forn=0,1,...,N—1. [1] X =Tx, (6]
m=0

whereT is anN X N diagonal matrix, withT,, = 1, if x, #
In matrix form 0, andT,, = _0 otheryvisg. T_hus, Eq. [2] with truncated data
and band-limited projection is

$=Fx, [2] d = CFTx. [7]

whereF,,, = e '@™M™ y is the IDFT ofs, x = F s, where

Trying to solve this equation represents the method

-1 _ 1 4i(27/N)mn H H H . . .

Fmo = x€7 77" DFT properties imply that the signaland i etheet al. (10). To see the relationship to their formula,

the projectionx can be extended periodically; i.e., for @]  .;nsider in Eq. [3] thak, # 0, forn = —M/2, ..., 0 .

Xo = Xnin @NdS, = Sy.p. We may write (M/2) — 1, whereM = N, and zero otherwise. It then

becomes
21 2w
S, = 2 Xe 'n™ forn=0,1,...,N—1. [3] ) .

=2 dy= > x.e'®™ forn=q,...,N—q. [8]

By tolerating negative indices for the elementsxothe zero
frequency coefficient is in the center of the vector, where wassuming Eq. [7] is indexed like Eqg. [1] this is equivalent to

are used to seeing the center of an object. definingC,, = 1, forn=q9,q + 1,...,N — g, and zero
The signals is obtained by sampling a continuous signal aitherwise andl,, = 1, forn =10, 1, ..., M/2) — 1 and
interval At, which implies that the bandwidth, of x is 1/At, n= N -1, N - 2, ..., N — (M/2), and zero otherwise.

and the elements of are frequency coefficients separated bquation [8] contains only the non-zero terms of Eq. [7]. If
Af = F,/N. The discrete image is related to the object by thd < N, the object bandwidtfr, = MATf is less than the data
point—spread function1@). For a dead timeT,, the interval sampling bandwidti, = 1/At, and the data are said to be
between the center of the radio pulse and the first datum, tlewersampled” becausat < 1/F,. To make computer pro-
number of points missing from each FID is gramming easier we rearrange the indices of Eq. [8] to ru
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from O toN,, the number of data collectetl, = N — 2q + s=d+a=Cs+ C°S, [11]
1, in the data vectod with d, = d,.4, and to run from O to

M = 1inX, with X = Xn-u2); then whereC® = | — C, and| is the identity matrix. The projection

X is given by the inverse DFT o, in other words
M-1

_ X 2w
= S %y oM DA, x=F!s=F'd+Fa [12]
m=0
forn=0,1,... ,N.—1, [9] wWe define
is the formula of Kuetheet al. (10), with the object centered y = F1d [13]

aroundX,,,. In matrix form,

_ _ the artifact-ridden projection. If we multiply Eq. [12] By =
d = AX, [10] | — T, we get

where Ty + TF Ca=0, [14]

2w
Am=e" N2 B, where we have used the fact theitx = 0 and insertedC‘a =
a to enforce the dimensions of the problem. We can solve fc
Aisan N — 2g + 1) X M matrix. M need not be less thana by minimizing || T°y + T°F 'C‘al| and substituting it in Eq.
N. Whenq is non-integerN. = N — 2g + 1 is integer but [12] to obtainx. Equation [14] has a number of unnecessar
N = N. + 29 — 1 is not. terms that we eliminate by writing Eq. [12] as
The SVD of CFT or A provides a pseudo inverse by
minimizing ||[d — CFTx| or |[d — AX|, where for any vector

N-1
z, ||zI*> = = (real(z,)® + imaginary(z,)?®). Non-unique solu- =yt 1 S a ei%’*mn
tions are resolved by minimizingk|>. In other words, we get " N o " ’

a least-squares fit with the smallest-possible frequency coeffi-

cients. Most pre-programmed SVD routines (el®), do not form=0,1,... ,N—-1, [19]

accept complex matrices, a limitation overcome by writing the

complex matrix equationXx + iA)(Xg + iX,) = dg + id, and eliminating all but zero terms afand non-zero terms of

as a real equation a. a, are non-zero fon from 0 toqg — 1 and fromN — g +
1toN — 1. Periodicity allows us to replace tihé — g + 1

Ar —A|| | X dg to N — 1 indices with—q + 1 to —1 and write
A, AR‘X,_ d |-
Method 2 1
O=Ynty 2 ael v ™
In the method of Madio, Gach, and Low#lj we attempt to n=—g+1
find the missing points by analyzing the region of the artifact- M M M
ridden projection outside the object. It should be zero but is a for m = 55t 1, ..., N— o 1. [16]

sum of sinusoids and noise. The negatives of the missing data
are the complex coefficients of the sinusoids, which can be
estimated by a least-squares curve fit. Inserting the missiBy definingy anda, with y,, = Y.z anda, = a,_q-1), we
data, thus obtained, into the FID and performing an IDFT ambtain a more convenient form

equivalent to fitting the artifact outside the object to the sum of

sinusoids and subtracting the curve, with its extrapolation into 1 2@-1)

the region containing the object, from the entire projection. Iy, +y > ae T mehn-q+n) _ =0,

this method, we calculateq2— 1 unknowns fromN — M n=0
knowns, while in the previous method we solved fdrun-

knowns fromN — 2q + 1 knowns. Let us decompose the form=0,1,....N=M-1. [i7]
signal s into two componentsl and a, whered, as defined )

before, contains the observed components aid zeros sub- N Matrix form

stituted for missing point, and consists of the missing part

of s, y+Ba=0, [18]
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whereB is (N — M) X (2g — 1), with

1 2m

B, = e TmPn-q+1)

The missing points can be found by minimizing eith&fy +
T°F 'C%l or ||y + B&| with the help of SVD.

Method 3

Kuetheet al's (10) method minimizes the size of a time-

domain vector|d — CFTx||. Plevritis and Macovski's 7)

method does a similar minimization in the frequency domai

Applying F* to Eqg. [7] and usingy = F*d (Eq. [13]) yields
y = FICFTX, [19]

which is solved forx by minimizing|ly — F 'CFTx||.

EQUIVALENCE OF THE METHODS

21
a— FTF Yd+a) + CFTF Xd+a)=0. [24]

Pre-multiplying byTF ~* and substitutinge from Eq. [12] into
the last term yield

TF*a—TF Yd+a)+ TF'CFTx =0. [25]
By noting thatCC = C andCd = d,
TF !C(d — CFTx) = 0. [26]

rl?ecauseF’1 = F*/N, T* = T, andC* = C, Eq. [26] is
identical to Eq. [20]; therefore, the two solutions are identical
The band-limiting constraint for the Gerchberg—Papouli
algorithm is the same ad < N in the above three methods.
Papoulis §) proves that convergence implies the minimizatior
of the same two quantities as SVD, so the Gerchberg—Papou
algorithm also provides the same answer, a least-squares fit
the M frequency components to thé, data, with the sum of
squares of the frequency components also minimized. Tt

matrix methods will generally be faster than iteration becaus

The quantities to be minimized by Kuetle¢ al's method once a pseudo inverse is calculated, it can be applied
(10) and by Plevritis and Macovski's7Y method differ by an multiple lines of data. The iteration must be repeated for eac
invertible (in fact, unitary within a constant) matfix *. Thus, line of data.

the information content is identical and both methods give thEAlthough the matrix methods involve different calculations

same answer. To be explicit, tkghat minimizeg|d — CFTX||
must satisfy the equation

T*F*C*(d — CFTx) = 0, [20]

to minimize different quantities, they should give the sam
answer. Two methods differ only by an invertible matrix anc
should have identical properties. The method of Madio, Gacl
and Lowe (1) is different in implementation because the
minimization is in a vector space complementary to that of th

where for any complex matri&, A* is the conjugate transpose©ther two methods. It solves for ¢2— 1) unknowns from

of A (14). Similarly, thex that minimizes|y — F 'CFTx||
must satisfy
T*F*C*(F Y)*(y — FICFTx) = 0. [21]

SubstitutingF ~*d for y and noting thatf*)* = (F*/N)* =

(N — M) equations, while the others solve fiof unknowns
from (N — 2g + 1) equations. It requires oversampling, while
the others do not.

PRACTICAL CONSIDERATIONS

Oversampling and Condition Number

F/N, we find that Eq. [21] is identical to Eq. [20]; therefore, the

two solutions are identical.
Next we show that Madio, Gach, and Lowe’s1) result

We will use the method of Kuethet al. (10), which solves
Eq. [9] for X by singular value decomposition éfin Eq. [10]

satisfies the same equation. In their methmds obtained by 10 illustrate some of the limitations of these methods. It doe

minimizing || T° + T°F 'C°al, so it must satisfy
Co(F)*To(Tey + TF'C%a) = 0.  [22]

SubstitutingC® for C**, F/N for (F 1)*, T for T, F 'd for
y, anda for Ca and noting thaff “T® = T° yield
CFT°F %(d + a) = 0. [23]

Substitutingl — T for T and noting thatC°d = 0 before
substitutingl — C for C° yield

not require oversampling\ > M) so we can see the problems
that arise when the number of data is smaller than the numt
of points we seek in the projectiolN{ < M = N). If we try

to find all M = N frequency coefficients that make up the
projection x, we are fitting the data with a full range of
sinusoids. By including the highest frequency components, w
can fit “discontinuities” in the periodically extended discrete
signal. Even if the known part of the signal is smooth, a DF
of thex we obtain may jump from one point to the next in the
region over which we are missing data. Consiglet 1, so we

are missings, andN, = N — 1. If M = N, thex we obtain

may imply anys,. If x has a zero baseline in its high frequen-
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cies, it implies ans, similar to its neighbors, ands, ;. A data projections
baseline offset implies that, is dissimilar from its neighbors.
The projection we obtain witg = 1 andM = N will have the

baseline offset that minimizd||, even if the true projection
has a zero baseline. Lowerig by one, toN,, restores the -10
baseline. The artifacts we obtain with = N andq = 1, 2, '5; g=10
3, etc., are similar to the artifacts that Madio, Gach, and Lov
(12) describe in the artifact-ridden projection as successi |
points of data are replaced by zeros. The difference is that -1t 02
missing points are set to whatever value minimigdsinstead 3
of zero. In conclusion, we must at least oversample so tt
M = N, to obtain artifact-free results.

One of our pleasant surprises is that one can miss a subs.
tial portion of data and still obtain a satisfactory projection. A
an index of success at solving ferit is useful to compute the
condition numbelC, (the ratio of the largest to the smalles
singular value of\). For an invertible matrix, such as the DFT, ¢
Cy = 1. The larger theC,, the more underdetermined the 6
problem, and the better quality data one needs to obtain me
ingful results. As a crude guid€, < 20 is good,C, > 10°
is bad. In practice, the methods fail in one of two ways. Eithe 4

Cy=6.41

Cy=398

3

the numerical routine for finding the decomposition fails t 3 2x1011¢

converge, or the data are too inaccurate or noisy. Failure e e
converge is either a result of computing with insufficient pre Cy=6.31x1017

cision or asking for too much, i.e., asking for a reasonab 101!

guess for solutions to an inferior class of matrix equations. (3, 41012

addition, large matrices may require more iteration than pr

programmed routines allow.) In our experience, failure t Cy=4.21x10"

converge in double precision means that the condition numt o ! o 8”06'

is so large £10') that even if one could compute the pseud. © 500 00 50

inverse using greater precision, it WOUId be of no practical Us& g, 1. The left column of graphs shows a set of synthetic datis the
because no NMR data are precise enough. When the SWih of the DFT of a projectior (see Fig. 2) and simulated Gaussian noise.

algorithm converges but the data are poor, the resulting figelid lines are real parts; dashed lines are imaginary. The noise has a stanc

quency coefficients are unreasonably large compared to thgggation_that is 1/30 the magnitude Rf so the signal-to-noise_ ratio _(Sl_\lR) of
ne would ex t There are man ts of unr nabl Iathe FIDs is 30. The value on each graph is the number of points missing from
one would expect. ére are many Sets or unreasonably Eggn FID; the vertical scale of the graphs decreases as the larger data

frequency components that may produce a slightly better fithoved to show more clearly the remaining data. The projections obtaint

than the correct set, and without sufficient data, the correct gein these data are shown in the graphs to the right. Their vertical scales ve

is an unlikely guess. by 12 orders of magnitude. For each pair of graghsis the condition number
To improveC,, increaseN by oversampling, and makd of the matrix that takes a projection wilh = 50, to a data set witNl, = N —

mall ible b ving for onlv th fr n 2@_ + 1, with N = 500. N/M = 10. The projections change imperceptibly
as small as possible by So g for only those Irequency CO% g varies from 0 to 10. The projection is distorted whegis approximately

ficients known to be non-zero (i.e., do not try to compute extfige SNR. AsC, increases further, the ability to obtain the projection is lost,
coefficients, outside the object). Of course, lowerippwers and the size of the projection becomes huge.

Cy. For a givenM, oversampling increasds and q by the

same factor and may raige, slightly, but nonetheless the

result improves. Increasind!, M, and g, all by the same  An unexpected result is that as one removes points from
factor, raiseCy, but does not degrade the result unl€ssis data set, the projections are virtually identical (graph one ©
so high that it is bordering the precision of computation. Evenp of the other) until the method fails from insufficient data
though the Madio, Gach, and Lowé&1) method produces a (Fig. 1). As a crude guide, one can miss the number of poin
matrix different from that of the Kuethet al. (10) method,C, that correspond to one cycle of the highest frequency comp
is the same. In most cases one would choose the method tieit before the method fails (i.e},< N/M). As a less crude
produces the smaller matrix. It is faster to find the SVD of thguide, one is safe if the signal-to-noise ratio of the data i
smaller matrix. We find that in practice, they do indeed prareater thanC, (Figs. 1 and 2). With highly precise and
duce the same result, so long as the problem is not borderapurate data, one can miss a great many points and still obt:
the precision of computation. the projection (Fig. 2). An instructive example of the limit is
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% data i projections may recover some recognizable features, but it will not resu

in a good projection. Whel€, and noise are in the range
where the projection is recognizable, altering the singule
values will destroy it. This is even true for the higb,
examples shown in Fig. 2.

Spectroscopy Data Present a Challenge for These Methods

For most spectroscopy data, the periodic extension is di
continuous; i.e., the signal decays smoothly fregrio sy-1,

Cy=4.21x10"

-1 0 k ::
1 1 8000
i Cy=1.21x10'5 |
-lu 500 -0.20 30 4000

FIG. 2. The data in the top left graph are a double-precision DFT of the &
projection in the top right graph (zero-filled to 500 points), so the signal-tos8000,
noise ratio is approximately 10 These data are the same as those in Fig. 1,
without the added synthetic noise. With these more preciseglatm be much
larger, i.e., 100 as opposed to 13, and one can still obtain the projection. As in
Fig. 1, when the condition number becomes as large as the SNR, the projectigoo

g 0
becomes distorted. ¢

1019

e b
50
e 3Cy102 |

tion, from a single FID, i.e.N. = N/2 — q, by solving ¢ 1 ‘ﬁ s

=

8000
trying to calculate a projection, complete with phase inform: L
1173

g0
-4000 -15
M-1 " 0 |ada3 points 1183 342 841
- _ . to FID ina
d,= >, xme"Wq('“‘?) (n+a), _
m=0 8000 &
forn=0,1,...,N.— 1. [27] 207

If M = N even if g = 0, the matrix is singular (the "
determinant is zero) and we cannot solve the equation me.... °
ingfully. We can obtain a SVD of this matrix iM < N; FIG. 3. (a) A 1024 point FID and (b) its IDFT. The inset in (a) displays
however, the condition number is so large that artificial datée break in the periodic data that results from missing the first three point
calculated with double precision will yield a projection bufypically, spectra like (b) need phase adjustments because of these miss
single-precision data will not. An alternative way to obtain aomts. (d) The result o_f transforn_”nrjg (a) with the pseudo inverse of the matri

ecti ith FID is t that th h tti that takes the 360 points containing the peaks of the spectrum to the 10
prOJec lon with one IS to ensure that the phase at ime Zed’&nts of a full 1027 point data set, missing its first three points. The baselir
is zero and Fhen construct the other half Qf the data as t8€y0 good: i.e., it decays to zero faster than the tails of Lorentzian peaks.
complex conjugate of the existing data, which is the same &sDFT (d) to obtain a FID (c), we find that the guesses for the missing poin
assuming that all the initial phases are zero. Although omenstruct a smooth curve for the periodic data, rather than the jump expect
cannot obtain phase information in this way it reduces ﬂfg spectroscopy data. To obtain a better estimate of the missing points, v

t of inf tion bei ht by half and. if th take the first 589 points of the FID in (a) (it is not necessary to use all 1024
amount orintormation being soug y haltand, irthe assumgﬁd reflect them to obtain a 1178 point data set whose periodic extensi

tion holds, results in a good projection. would be continuous if it contained the missing points. We compute 500 of th

Typically, one realizes the full power of SVD wheZy, is frequency coefficients (f) (a superposition of two reflected spectra) with thes
large by setting the most extreme singular values to zero befdpéa, and use (f) to compute the missing points (three on each end of the dou
Computing the pseudo inverse. We find that wignis Iarge FID data set). The inset of (e) shows that the newly computed missing poin

. L in form a continuous curve, but are better guesses than those in (c). (9]
enoth or the data noisy enouqh that the projection, Compuggﬁmplete FID (the three newly computed points added to (a) and its inver:

usfing all §ingu!ar values, becqme§ a very large SmOOth hUMBRT (h) is a more typical looking spectrum than (d) that needs less pha:
this practice will return the projection to a reasonable size anglrection than (b).

-150
1027 290 689
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missing from spectroscopy data, construct another half of
bigger data set as the mirror of the first (not the conjugate of tf
mirror, because that makes the unlikely assumption that tt
phase ofs, is zero), then treat it like the double FID imaging
data. The spectrum will be a confusing superposition of tw
mirror spectra, but the guesses for the missing points will b
reasonable.

A Couple More Tricks to Reduce the Condition Number

When imaging with FIDs, one can acquire a set of dat
without applied magnetic field gradients and use the abo\
method (Figs. 3e and 3f) to obtas. Thens, can be included
in the data sets, and the matrix suitably expanded. This co
strains the area of the projections and sometimes makes ot

. improvements (Fig. 4). An important benefit is that the condi
tion number of the matrix can be lowered substantially, an

FIG. 4. (a) A projection obtained from the data in Fig. 1 with 22 pointpne can get away with data sets that are not substantia
missing from either end. The condition numiigy of the decomposed matrix oversampled

is high and the projection is too large, and distorted into too smooth a hump. . . . .
The bold curve is the magnitude of the projection; solid and dashed curves aréA‘nOther method of reducmg the condition number is to lie

real and imaginary, respectively. The inset between the four graphs showsﬁ\QOth (Fig. 4). Within reason (about 10%), teIIing acomputet
true projection. (b) A projection obtained from the same data as (a) but usithgt g is smaller thanT /At has an edge-enhancing effect on
the pseudo inverse of a low&, matrix that assumes there are only 20 datghe projection, but does not destroy it. This will, of course

missing from each end of a 496 point data set. Compared to (a), it appeg{§tort quantitative information obtained from the pixel value:
edge-enhanced. It is fortuitously the correct size, but the phase is distorte an image

Projections (c) and (d) are the correct size with reason. They were obtairfd

after addition ofs, to either end of the data seét,’s are substantially lower.

Projection (c) uses the correct number of missing data; projection (d), like (b), ACKNOWLEDGMENTS
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