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Some NMR experiments produce data with several of the initial
oints missing. The inverse discrete Fourier transform (IDFT)
ssumes these points are present so the data cannot be so trans-
ormed without artifact-ridden results. This problem is often par-
icularly severe when projection imaging with free-induction de-
ays (FIDs). This paper compares recent methods for obtaining a
rojection from incomplete data and elaborates on their strengths
nd limitations. One method is to write the transform that would
ake the desired projection to the truncated data set, and then
olve the matrix equation by singular value decomposition. A
econd replaces the missing data with zeros, so that an IDFT
roduces a projection with unwanted artifacts. Then one solves the
atrix equation that takes the desired projection to the artifact-

idden projection. A third uses the same artifact-ridden projection,
ut fits the region outside the bandwidth of the sample with as
any sinusoidal functions as there are missing data. The coeffi-

ients of these functions are estimates of the missing data, and the
rojection is obtained by transforming the completed FID or
ubtracting the extrapolation of the fitted curve from the region
ontaining the object. We show that when all three methods are
pplicable, they theoretically produce the same result. They differ
y ease of implementation and possibly by computational errors.
hey give a result similar to that of the previous method that

teratively corrects the FID and projection after repeated IDFTs
nd DFTs. We find that one can obtain a projection despite
issing a substantial number of data. © 1999 Academic Press

Key Words: partial-data transform; compact support; band-
imited; extrapolation; Gerchberg–Papoulis.

INTRODUCTION

In projection imaging with free-induction decays (FIDs),
nitial part of the signal cannot be sampled during radio tr

ission, or during recovery of the receiver and assoc
lters. One is faced with the problem of constructing a pro
ion (1D image) without the initial data. Usually, in NM
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pectroscopy, only a few data are missing and the spectr
orrected by adjusting the baseline and phase. When
pectroscopy data are missing, they can be extrapolated
tting the FID with a series of damped complex exponen
1), or the artifact produced in the spectrum can be app
ated and subtracted (2). In solid state NMR with shortT2

amples, the problem is more serious and the solution
ore specialized (3). In our applications of imaging with FID

he problem is severe and the corrections used in spectro
o not result in a satisfactory projection. The applied magn
eld gradient makes the FID decay fast, and implies m
requency components, making a curve fit more difficult.
elpful to oversample the data, i.e., collect data at a frequ
reater than that of the bandwidth of the object. Then the o
ccupies a limited region of the projection, and one can us
nowledge that the projection should be zero outside
egion. Gerchberg (4) and Papoulis (5) used this fact in the
terative technique. An inverse discrete Fourier transf
IDFT) of the known portion of the signal, along with ze
ubstituted for missing data, yields a projection that is the
o zero outside the bounds of the object. Then a DFT yie
ID, which in turn is modified by replacing the known segm
ith the original data. This procedure is iterated until it c
erges to yield an estimate for the missing data points an
rojection.
Jain and Ranganath (6) presented a generalization of tra

orming partial data from band-limited signals, which Plevr
nd Macovski (7) applied to NMR imaging to construct imag
f spatially bounded objects despite the fact that data
issing from the ends of echoes. Both references expres
roblem as an ill-conditioned matrix equation, which is
roved using known constraints of the object, and sug
olving it by singular value decomposition (SVD). An ext
ive review of transforming partial data sets for NMR imag
ppears in Lianget al. (8). McGibneyet al. (9) compare som
f these methods and evaluate their usefulness in NMR i

ng. The development of the non-iterative techniques was
irected toward the problem of data missing from the be
ings of FIDs (the center of “k-space” in imaging jargon). Th

est

e-

e,

erchberg–Papoulis algorithm remained the method of choice
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19TRANSFORMING NMR DATA DESPITE MISSING POINTS
or this problem. We recently proposed two more non-itera
ethods (10, 11) to address these early missing data. Plev
nd Macovski’s (7) method can also be applied to early m

ng data, so three non-iterative methods are available to
he same problem. In this paper, we demonstrate that wh
hree methods are applicable, they will theoretically yield
ame result because they imply that the same matrix equ
s satisfied. In addition, when the Gerchberg–Papoulis a
ithm converges, it should also yield the same result.
alculations are different, however, so the methods may d
y errors in computation. One method is easy to progra

nclude non-integral numbers of missing data and situa
hen the data are not oversampled. We discuss it in det
how the limitations of these methods.

DEFINITION OF THE PROBLEM

We seek a one-dimensional (1D) discrete image, or pr
ion, x 5 col(x0, x1, . . . , xN21). The digitized signal with n
issing points will be represented bys 5 col(s0, s1, . . . ,

N21), wheres0, s1, . . . , s(N/ 2)21 is one FID with a positiv
agnetic field gradient andsN, sN21, . . . , sN/ 2 is another FID
ith a negative one. BecausesN 5 s0, it may be excluded from

. The relationship betweens andx is given by the DFT,

sn 5 O
m50

N21

xme2i
2p

N mn, for n 5 0, 1, . . . ,N 2 1. [1]

n matrix form

s 5 Fx, [2]

hereFmn 5 e2i (2p/N)mn. x is the IDFT ofs, x 5 F21s, where
mn
21 5 1

Nei (2p/N)mn. DFT properties imply that the signals and
he projectionx can be extended periodically; i.e., for alln,
n 5 xN1n and sn 5 sN1n. We may write

sn 5 O
m52

N
2

N

2 21

xme2i
2p

N mn, for n 5 0, 1, . . . ,N 2 1. [3]

y tolerating negative indices for the elements ofx, the zero
requency coefficient is in the center of the vector, where
re used to seeing the center of an object.
The signals is obtained by sampling a continuous signa

ntervalDt, which implies that the bandwidthF b of x is 1/Dt,
nd the elements ofx are frequency coefficients separated
f 5 F b/N. The discrete image is related to the object by
oint–spread function (12). For a dead timeTd, the interva
etween the center of the radio pulse and the first datum
umber of points missing from each FID is
e
s
-
ve
all
e
ion
o-
e
er
to
s
to

c-

e

t

e

he

q 5
Td

Dt
. [4]

d does not have to be an integer multiple ofDt so q can be
on-integer, but for the purposes of comparing method
onsiderq to be integer. Our task is to findx, even when
lementss0, s1, . . . , sq21 andsN, sN21, . . . , sN2q11 are miss

ng. The total number of points missing froms is 2q 2 1,
ecause the first points0 5 sN is common to each FID.

COMMON NOTATION FOR THREE METHODS

ethod 1

To develop a matrix formulation common to the three m
ds, we represent the completeness of the data by anN 3 N
iagonal matrixC, whereCnn 5 1, if the nth data point is
resent, andCnn 5 0, if the nth data point is missing. The

d 5 Cs [5]

efines the data set with zeros substituted for the mis
oints.
Similarly, the knowledge that some of the elementsx are

ero is represented by

x 5 Tx , [6]

hereT is anN 3 N diagonal matrix, withTnn 5 1, if xn Þ
, andTnn 5 0 otherwise. Thus, Eq. [2] with truncated d
nd band-limited projection is

d 5 CFTx . [7]

Trying to solve this equation represents the method
uethe et al. (10). To see the relationship to their formu
onsider in Eq. [3] thatxn Þ 0, for n 5 2M/ 2, . . . , 0, . . .
M/ 2) 2 1, where M # N, and zero otherwise. It the
ecomes

dn 5 O
m52

M
2

M

2 21

xme2i
2p

N mn, for n 5 q, . . . , N 2 q. [8]

ssuming Eq. [7] is indexed like Eq. [1] this is equivalen
efiningCnn 5 1, for n 5 q, q 1 1, . . . , N 2 q, and zero
therwise andTnn 5 1, for n 5 0, 1, . . . , (M/ 2) 2 1 and
5 N 2 1, N 2 2, . . . , N 2 (M/ 2), and zero otherwis
quation [8] contains only the non-zero terms of Eq. [7
, N, the object bandwidthF o 5 MDf is less than the da

ampling bandwidthF b 5 1/Dt, and the data are said to
oversampled” becauseDt , 1/F o. To make computer pro
ramming easier we rearrange the indices of Eq. [8] to
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20 KUETHE ET AL.
rom 0 to Nc, the number of data collected,Nc 5 N 2 2q 1
, in the data vectord# with d# n 5 dn1q, and to run from 0 to

2 1 in x# , with x# m 5 xm2(M/ 2); then

d# n 5 O
m50

M21

x# me2i
2p

Nc12q21~m2
M
2 !~n1q!,

for n 5 0, 1, . . . ,Nc 2 1, [9]

s the formula of Kuetheet al. (10), with the object centere
roundx# M/ 2. In matrix form,

d# 5 Ax# , [10]

here

Amn 5 e2i
2p

Nc12q21~m2
M
2 !~n1q!.

is an (N 2 2q 1 1) 3 M matrix. M need not be less tha
. Whenq is non-integer,Nc 5 N 2 2q 1 1 is integer bu
5 Nc 1 2q 2 1 is not.
The SVD of CFT or A provides a pseudo inverse
inimizing \d 2 CFTx\ or \d# 2 Ax#\, where for any vecto

, \z\ 2 5 ¥ (real(zk)
2 1 imaginary(zk)

2). Non-unique solu
ions are resolved by minimizing\x\ 2. In other words, we ge

least-squares fit with the smallest-possible frequency c
ients. Most pre-programmed SVD routines (e.g.,13), do not
ccept complex matrices, a limitation overcome by writing
omplex matrix equation (AR 1 iA I)(xR 1 ix I) 5 dR 1 id I

s a real equation

UAR 2A I

A I AR
U U xR

xI
U 5 UdR

dI
U .

ethod 2

In the method of Madio, Gach, and Lowe (11) we attempt to
nd the missing points by analyzing the region of the artif
idden projection outside the object. It should be zero but
um of sinusoids and noise. The negatives of the missing
re the complex coefficients of the sinusoids, which ca
stimated by a least-squares curve fit. Inserting the mi
ata, thus obtained, into the FID and performing an IDFT
quivalent to fitting the artifact outside the object to the sum
inusoids and subtracting the curve, with its extrapolation
he region containing the object, from the entire projection
his method, we calculate 2q 2 1 unknowns fromN 2 M
nowns, while in the previous method we solved forM un-
nowns fromN 2 2q 1 1 knowns. Let us decompose t
ignal s into two componentsd and a, whered, as defined
efore, contains the observed components ofs and zeros sub
tituted for missing point, anda consists of the missing pa
f s,
fi-

e

-
a
ta
e

ng
e
f

to
n

s 5 d 1 a 5 Cs 1 C cs, [11]

hereCc 5 I 2 C, andI is the identity matrix. The projectio
is given by the inverse DFT ofs, in other words

x 5 F 21s 5 F 21d 1 F 21a. [12]

e define

y 5 F 21d, [13]

he artifact-ridden projection. If we multiply Eq. [12] byT c 5
2 T, we get

T cy 1 T cF 21C ca 5 0, [14]

here we have used the fact thatT cx 5 0 and insertedCca 5
to enforce the dimensions of the problem. We can solv
by minimizing \T cy 1 T cF21Cca\ and substituting it in Eq

12] to obtainx. Equation [14] has a number of unnecess
erms that we eliminate by writing Eq. [12] as

xm 5 ym 1
1

N O
n50

N21

ane
i

2p

N mn,

for m 5 0, 1, . . . ,N 2 1, [15]

nd eliminating all but zero terms ofx and non-zero terms
. an are non-zero forn from 0 to q 2 1 and fromN 2 q 1
to N 2 1. Periodicity allows us to replace theN 2 q 1 1

o N 2 1 indices with2q 1 1 to 21 and write

0 5 ym 1
1

N O
n52q11

q21

ane
i

2p

N mn,

for m 5
M

2
,

M

2
1 1, . . . , N 2

M

2
2 1. [16]

y definingy# anda# , with y# m 5 ym1(M/ 2) anda# n 5 an2(q21), we
btain a more convenient form

# m 1
1

N O
n50

2~q21!

a# ne
i

2p

N ~m1
M
2 !~n2q11! 5 0,

for m 5 0, 1, . . . ,N 2 M 2 1. [17]

n matrix form

y# 1 Ba# 5 0, [18]
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21TRANSFORMING NMR DATA DESPITE MISSING POINTS
hereB is (N 2 M) 3 (2q 2 1), with

Bmn 5
1

N
ei

2p

N ~m1
M
2 !~n2q11!.

he missing points can be found by minimizing either\T cy 1
cF21Cca\ or \y# 1 Ba#\ with the help of SVD.

ethod 3

Kuetheet al.’s (10) method minimizes the size of a tim
omain vector\d 2 CFTx\. Plevritis and Macovski’s (7)
ethod does a similar minimization in the frequency dom
pplying F21 to Eq. [7] and usingy 5 F21d (Eq. [13]) yields

y 5 F 21CFTx , [19]

hich is solved forx by minimizing \y 2 F21CFTx\.

EQUIVALENCE OF THE METHODS

The quantities to be minimized by Kuetheet al.’s method
10) and by Plevritis and Macovski’s (7) method differ by an
nvertible (in fact, unitary within a constant) matrixF21. Thus,
he information content is identical and both methods give
ame answer. To be explicit, thex that minimizes\d 2 CFTx\
ust satisfy the equation

T* F* C* ~d 2 CFTx ! 5 0, [20]

here for any complex matrixA, A* is the conjugate transpo
f A (14). Similarly, the x that minimizes\y 2 F21CFTx\
ust satisfy

T* F* C* ~F 21!* ~y 2 F 21CFTx ! 5 0. [21]

ubstitutingF21d for y and noting that (F21)* 5 (F*/ N)* 5
/N, we find that Eq. [21] is identical to Eq. [20]; therefore,

wo solutions are identical.
Next we show that Madio, Gach, and Lowe’s (11) result

atisfies the same equation. In their method,a is obtained by
inimizing \T cy 1 T cF21Cca\, so it must satisfy

C c* ~F 21!* T c* ~T cy 1 T cF 21C ca! 5 0. [22]

ubstitutingCc for Cc*, F/N for (F21)*, T c for T c*, F21d for
, anda for Cca and noting thatT cT c 5 T c yield

CcFT cF 21~d 1 a! 5 0. [23]

ubstitutingI 2 T for T c and noting thatCcd 5 0 before
ubstitutingI 2 C for Cc yield
.

e

a 2 FTF 21~d 1 a! 1 CFTF 21~d 1 a! 5 0. [24]

re-multiplying byTF21 and substitutingx from Eq. [12] into
he last term yield

TF 21a 2 TF 21~d 1 a! 1 TF 21CFTx 5 0. [25]

y noting thatCC 5 C andCd 5 d,

TF 21C~d 2 CFTx ! 5 0. [26]

ecauseF21 5 F*/ N, T* 5 T, and C* 5 C, Eq. [26] is
dentical to Eq. [20]; therefore, the two solutions are ident

The band-limiting constraint for the Gerchberg–Papo
lgorithm is the same asM , N in the above three method
apoulis (5) proves that convergence implies the minimiza
f the same two quantities as SVD, so the Gerchberg–Pap
lgorithm also provides the same answer, a least-squares

he M frequency components to theNc data, with the sum o
quares of the frequency components also minimized.
atrix methods will generally be faster than iteration bec
nce a pseudo inverse is calculated, it can be applie
ultiple lines of data. The iteration must be repeated for

ine of data.
Although the matrix methods involve different calculatio

o minimize different quantities, they should give the sa
nswer. Two methods differ only by an invertible matrix a
hould have identical properties. The method of Madio, G
nd Lowe (11) is different in implementation because
inimization is in a vector space complementary to that o
ther two methods. It solves for (2q 2 1) unknowns from
N 2 M) equations, while the others solve forM unknowns
rom (N 2 2q 1 1) equations. It requires oversampling, wh
he others do not.

PRACTICAL CONSIDERATIONS

versampling and Condition Number

We will use the method of Kuetheet al. (10), which solves
q. [9] for x# by singular value decomposition ofA in Eq. [10]

o illustrate some of the limitations of these methods. It d
ot require oversampling (N . M) so we can see the proble

hat arise when the number of data is smaller than the nu
f points we seek in the projection (Nc , M # N). If we try

o find all M 5 N frequency coefficients that make up
rojection x, we are fitting the data with a full range
inusoids. By including the highest frequency components
an fit “discontinuities” in the periodically extended discr
ignal. Even if the known part of the signal is smooth, a D
f thex we obtain may jump from one point to the next in
egion over which we are missing data. Considerq 5 1, so we
re missingso andNc 5 N 2 1. If M 5 N, the x we obtain
ay imply anys . If x has a zero baseline in its high frequ
o



c
b s.
T
b n
h e
b
3 ow
( siv
p t t
m
o th
M

bst
t . A
a e
c est
s T,
C he
p ea
i
i the
t to
c re
c re
c ab
g . (I
a pr
p t
c mb
i udo
i l us
b SV
a fr
q tho
o lar
f r
t ct s
i

a oe
fi xtr
c
C
s e
r e
f
s ve
t a
m
i d t
p th
s pro
d eri
t

om a
d e on
t ata
( oints
t mpo-
n e
g a is
g nd
a btain
t t is

s ise.
S tandard
d of
t from
e ata are
r tained
f s vary
b r
o
2 bly
a
t lost,
a

22 KUETHE ET AL.
ies, it implies anso similar to its neighborss1 and sN21. A
aseline offset implies thatso is dissimilar from its neighbor
he projection we obtain withq 5 1 andM 5 N will have the
aseline offset that minimizes\x#\, even if the true projectio
as a zero baseline. LoweringM by one, toNc, restores th
aseline. The artifacts we obtain withM 5 N andq 5 1, 2,
, etc., are similar to the artifacts that Madio, Gach, and L
11) describe in the artifact-ridden projection as succes
oints of data are replaced by zeros. The difference is tha
issing points are set to whatever value minimizes\x#\ instead
f zero. In conclusion, we must at least oversample so

# Nc to obtain artifact-free results.
One of our pleasant surprises is that one can miss a su

ial portion of data and still obtain a satisfactory projection
n index of success at solving forx# , it is useful to compute th
ondition numberCN (the ratio of the largest to the small
ingular value ofA). For an invertible matrix, such as the DF
N 5 1. The larger theCN, the more underdetermined t
roblem, and the better quality data one needs to obtain m

ngful results. As a crude guide,CN , 20 is good,CN . 104

s bad. In practice, the methods fail in one of two ways. Ei
he numerical routine for finding the decomposition fails
onverge, or the data are too inaccurate or noisy. Failu
onverge is either a result of computing with insufficient p
ision or asking for too much, i.e., asking for a reason
uess for solutions to an inferior class of matrix equations
ddition, large matrices may require more iteration than
rogrammed routines allow.) In our experience, failure
onverge in double precision means that the condition nu
s so large (.1010) that even if one could compute the pse
nverse using greater precision, it would be of no practica
ecause no NMR data are precise enough. When the
lgorithm converges but the data are poor, the resulting
uency coefficients are unreasonably large compared to
ne would expect. There are many sets of unreasonably

requency components that may produce a slightly bette
han the correct set, and without sufficient data, the corre
s an unlikely guess.

To improveCN, increaseN by oversampling, and makeM
s small as possible by solving for only those frequency c
cients known to be non-zero (i.e., do not try to compute e
oefficients, outside the object). Of course, loweringq lowers
N. For a givenM, oversampling increasesN and q by the
ame factor and may raiseCN slightly, but nonetheless th
esult improves. IncreasingN, M, and q, all by the sam
actor, raisesCN, but does not degrade the result unlessCN is
o high that it is bordering the precision of computation. E
hough the Madio, Gach, and Lowe (11) method produces
atrix different from that of the Kuetheet al. (10) method,CN

s the same. In most cases one would choose the metho
roduces the smaller matrix. It is faster to find the SVD of
maller matrix. We find that in practice, they do indeed
uce the same result, so long as the problem is not bord

he precision of computation.
e
e
he
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An unexpected result is that as one removes points fr
ata set, the projections are virtually identical (graph on

op of the other) until the method fails from insufficient d
Fig. 1). As a crude guide, one can miss the number of p
hat correspond to one cycle of the highest frequency co
ent before the method fails (i.e.,q , N/M). As a less crud
uide, one is safe if the signal-to-noise ratio of the dat
reater thanCN (Figs. 1 and 2). With highly precise a
ccurate data, one can miss a great many points and still o

he projection (Fig. 2). An instructive example of the limi

FIG. 1. The left column of graphs shows a set of synthetic datas. It is the
um of the DFT of a projectionx (see Fig. 2) and simulated Gaussian no
olid lines are real parts; dashed lines are imaginary. The noise has a s
eviation that is 1/30 the magnitude ofso, so the signal-to-noise ratio (SNR)

he FIDs is 30. Theq value on each graph is the number of points missing
ach FID; the vertical scale of the graphs decreases as the larger d
emoved to show more clearly the remaining data. The projections ob
rom these data are shown in the graphs to the right. Their vertical scale
y 12 orders of magnitude. For each pair of graphs,CN is the condition numbe
f the matrix that takes a projection withM 5 50, to a data set withNc 5 N 2
q 1 1, with N 5 500. N/M 5 10. The projections change impercepti
sq varies from 0 to 10. The projection is distorted whenCN is approximately

he SNR. AsCN increases further, the ability to obtain the projection is
nd the size of the projection becomes huge.
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23TRANSFORMING NMR DATA DESPITE MISSING POINTS
rying to calculate a projection, complete with phase infor
ion, from a single FID, i.e.,Nc 5 N/ 2 2 q, by solving

d# n 5 O
m50

M21

x# me2i
p

Nc1qSm2
M
2 D ~n1q!,

for n 5 0, 1, . . . ,Nc 2 1. [27]

f M 5 Nc, even if q 5 0, the matrix is singular (th
eterminant is zero) and we cannot solve the equation m

ngfully. We can obtain a SVD of this matrix ifM , Nc;
owever, the condition number is so large that artificial
alculated with double precision will yield a projection
ingle-precision data will not. An alternative way to obtai
rojection with one FID is to ensure that the phase at time

s zero and then construct the other half of the data a
omplex conjugate of the existing data, which is the sam
ssuming that all the initial phases are zero. Although
annot obtain phase information in this way, it reduces
mount of information being sought by half and, if the assu

ion holds, results in a good projection.
Typically, one realizes the full power of SVD whenCN is

arge by setting the most extreme singular values to zero b
omputing the pseudo inverse. We find that whenCN is large
nough or the data noisy enough that the projection, com
sing all singular values, becomes a very large smooth h

his practice will return the projection to a reasonable size

FIG. 2. The data in the top left graph are a double-precision DFT o
rojection in the top right graph (zero-filled to 500 points), so the signa
oise ratio is approximately 1014. These data are the same as those in Fi
ithout the added synthetic noise. With these more precise data,q can be much

arger, i.e., 100 as opposed to 13, and one can still obtain the projection
ig. 1, when the condition number becomes as large as the SNR, the pro
ecomes distorted.
c

-

n-

a

ro
he
as
e
e
-

re

ed
p,
d

ay recover some recognizable features, but it will not re
n a good projection. WhenCN and noise are in the ran
here the projection is recognizable, altering the sing
alues will destroy it. This is even true for the highCN

xamples shown in Fig. 2.

pectroscopy Data Present a Challenge for These Metho

For most spectroscopy data, the periodic extension is
ontinuous; i.e., the signal decays smoothly fromso to sN21,

FIG. 3. (a) A 1024 point FID and (b) its IDFT. The inset in (a) displa
he break in the periodic data that results from missing the first three p
ypically, spectra like (b) need phase adjustments because of these m
oints. (d) The result of transforming (a) with the pseudo inverse of the m

hat takes the 360 points containing the peaks of the spectrum to the
oints of a full 1027 point data set, missing its first three points. The bas

s too good; i.e., it decays to zero faster than the tails of Lorentzian pea
e DFT (d) to obtain a FID (c), we find that the guesses for the missing p
onstruct a smooth curve for the periodic data, rather than the jump exp
or spectroscopy data. To obtain a better estimate of the missing poin
ake the first 589 points of the FID in (a) (it is not necessary to use all 1
nd reflect them to obtain a 1178 point data set whose periodic exte
ould be continuous if it contained the missing points. We compute 500

requency coefficients (f) (a superposition of two reflected spectra) with
ata, and use (f) to compute the missing points (three on each end of the
ID data set). The inset of (e) shows that the newly computed missing
gain form a continuous curve, but are better guesses than those in (c)
omplete FID (the three newly computed points added to (a) and its in
FT (h) is a more typical looking spectrum than (d) that needs less
orrection than (b).
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hen jumps tosN 5 so. In contrast to the example in Eq. [2
ne FID is considered to be a complete set of data, inste
alf a set of data. (The fictitious analog to “the other FID

maging data would result if one could reverse the relative
requencies—higher to lower andvice versa.) The DFT mod
ls the signal as the discrete sum ofnon-decayingsinusoids
he only way to construct the discontinuity in spectrosc
ata is for all frequency components (notably the hig

requency ones) to be non-zero. Thus, spectroscopy data
ot be band-limited in the same sense as imaging da
elated difference between spectroscopy and imaging is th
hase of a spectrum is not uniform, even when the r

ransmission successfully starts all the spins at the same p
he frequency components have the initial phases necess
onstruct the discontinuity. In imaging, the phase can be
orm.

It is tempting to use these methods for spectroscop
reating one FID as a full data set missing only a few poin
he beginning (i.e., put a 2 in front of thep in Eq. [27]) with
he expectation that the phase will be similar to a typ
pectrum but require less correction. However, the resul
aseline that decays uncharacteristically to zero at the

requency ends, and the guesses for the missing points cr

FIG. 4. (a) A projection obtained from the data in Fig. 1 with 22 po
issing from either end. The condition numberCN of the decomposed matr

s high and the projection is too large, and distorted into too smooth a h
he bold curve is the magnitude of the projection; solid and dashed curv
eal and imaginary, respectively. The inset between the four graphs sho
rue projection. (b) A projection obtained from the same data as (a) but
he pseudo inverse of a lowerCN matrix that assumes there are only 20 d
issing from each end of a 496 point data set. Compared to (a), it ap
dge-enhanced. It is fortuitously the correct size, but the phase is dis
rojections (c) and (d) are the correct size with reason. They were ob
fter addition ofso to either end of the data set.CN’s are substantially lowe
rojection (c) uses the correct number of missing data; projection (d), lik
bs by two. Even thoughCN’s for (c) and (d) are reasonably low, t
rojections are not as good as those for similarCN’s in Fig. 1 because many

he least noisy data are missing.
mooth curve betweensN21 and so (Fig. 3). To obtain points
of

in

y
st
an-
A
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gh
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issing from spectroscopy data, construct another half
igger data set as the mirror of the first (not the conjugate o
irror, because that makes the unlikely assumption tha
hase ofso is zero), then treat it like the double FID imagi
ata. The spectrum will be a confusing superposition of
irror spectra, but the guesses for the missing points wi

easonable.

Couple More Tricks to Reduce the Condition Number

When imaging with FIDs, one can acquire a set of d
ithout applied magnetic field gradients and use the a
ethod (Figs. 3e and 3f) to obtainso. Thenso can be include

n the data sets, and the matrix suitably expanded. This
trains the area of the projections and sometimes makes
mprovements (Fig. 4). An important benefit is that the co
ion number of the matrix can be lowered substantially,
ne can get away with data sets that are not substan
versampled.
Another method of reducing the condition number is to

boutq (Fig. 4). Within reason (about 10%), telling a compu
hat q is smaller thanTd/Dt has an edge-enhancing effect
he projection, but does not destroy it. This will, of cou
istort quantitative information obtained from the pixel val
f an image.
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